The relationship between ATPase activity, isometric force, and myosin light-chain phosphorylation and thiophosphorylation in skinned smooth muscle fiber bundles from chicken gizzard.
نویسندگان
چکیده
Isometric force developed by skinned gizzard muscle fiber bundles and levels of phosphorylation and thiophosphorylation of the 20,000-dalton myosin light chain were determined. These data showed a highly non-linear relationship between isometric force and myosin light-chain phosphorylation. Maximum force was developed at approximately 0.2 mol of phosphate/mol of light chain as reported previously (Hoar, P. E., Kerrick, W. G. L., and Cassidy, P. S. (1979) Science 204, 503-506). In contrast, the relationship between isometric force and myosin light-chain thiophosphorylation was linear, with maximum force occurring at 1.0 mol of thiophosphate/mol of myosin light chain. These observations are consistent with the latch-bridge hypothesis for conditions of varying myosin light-chain phosphatase/myosin light-chain kinase activity ratios as discussed by Hai and Murphy [1988) Am. J. Physiol. 254, C99-C106). To further test the latch-bridge hypothesis, ATPase activity was also measured during isometric force development in these fiber bundles. The relationship between isometric force and ATPase activity was linear whether the myosin light chains were phosphorylated or thiophosphorylated. Thus the number of cycling myosin cross-bridges, as measured by ATPase activity, was directly proportional to the force the muscle developed, not to the level of myosin light-chain phosphorylation. This finding that high levels of tension generated at low levels of light-chain phosphorylation are associated with high levels of ATPase activity is inconsistent with the latch-bridge model (Hai and Murphy, 1988).
منابع مشابه
Caldesmon and a 20-kDa actin-binding fragment of caldesmon inhibit tension development in skinned gizzard muscle fiber bundles.
Caldesmon is known to inhibit actin-activated myosin ATPase activity in solution, to inhibit force production when added to skeletal muscle fibers, and to alter actin movement in the in vitro cell motility assay. It is less clear that caldesmon can inhibit contraction in smooth muscle cells in which caldesmon is abundant. We now show that caldesmon and its 20-kDa actin-binding fragment are able...
متن کاملMyosin light chain phosphatase. Effect on the activation and relaxation of gizzard smooth muscle skinned fibers.
Skinned cells of chicken gizzard were used to study the effect of a smooth muscle phosphatase (SMP-IV) on activation and relaxation of tension. SMP-IV has previously been shown to dephosphorylate light chains on myosin. When this phosphatase was added to submaximally Ca2+-activated skinned cells, tension increased while phosphorylation of myosin light chains decreased. In contrast, when the myo...
متن کاملEffect of lithium on smooth muscle contraction and phosphorylation of myosin light chain by MLCK.
The aims of our study were to investigate into the effect of lithium on smooth muscle contraction and phosphorylation of myosin light chain (MLC20) by MLCK and to find out the clue of its mechanism. Isolated rabbit duodenum smooth muscle strips were used to study the effects of lithium on their contractile activity under the condition of Krebs' solution by means of HW-400S constant temperature ...
متن کاملActivation of Actin-activated ATPase in Smooth Muscle by Phosphorylation of Myosin Light Chain with Protease-activated Kinase
The 20,000-dalton light chain of myosin from chicken gizzard has been shown to be phosphorylated in a Ca’+ and calmodulin-independent manner by the activated form of a protease-activated kinase from rabbit reticulocytes. Protease-activated kinase I incorporates phosphate stoichiometrically into the phosphorylatable light chain (P-light chain) in isolated myosin light chains and in actomyosin...
متن کاملDeterminants of the contractile properties in the embryonic chicken gizzard and aorta.
Smooth muscle is generally grouped into two classes of differing contractile properties. Tonic smooth muscles show slow rates of force activation and relaxation and slow speeds of shortening (V(max)) but force maintenance, whereas phasic smooth muscles show poor force maintenance but have fast V(max) and rapid rates of force activation and relaxation. We characterized the development of gizzard...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 265 15 شماره
صفحات -
تاریخ انتشار 1990